The Combined Schubert/Secant Finite-difference Algorithm
for Solving Sparse Nonlinear Systems of Equations’

by
J.E. Dennis, Jr.2
and

Guangye Li®

Technical Report 86-11, May 1986
(revised November 1986)

IThis research was partially supported by contracts and grants: DOE DE-AS05-82ER1-13016 and AFOSR 85-0243,
and it was also partially supported by Jilin University, People’s Republic of China. This work forms a portion of Dr. Li’s
Ph.D. dissertation in Mathematical Sciences, Rice University written under the direction of Professor Dennis.
2Department of Mathematical Sciences, Rice University, P.O. Box 1892, Houston, Texas 77251.

3Computer Science Department, Cornell University, Upson Hall, Ithaca, New York 14853. Permanent address:
Computer Center, Jilin University, People’s Republic of China.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 1986 2. REPORT TYPE 00-00-1986 to 00-00-1986
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Combined Schubert/Secant Finite-difference Algorithm for Solving | o .=\t NUMBER

Sparse Nonlinear Systems of Equations
5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computational and Applied M athematics Department ,Rice REPORT NUMBER
University,6100 Main Street M S 134,Houston, T X,77005-1892

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 24
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract: This paper presents an algorithm, the combined Schubert/secant/finite difference algo-
rithm, for solving sparse nonlinear systems of equations. This algorithm is based on dividing the
columns of the Jacobian into two parts, and using different algorithms on each part. This algo-
rithm incorporates advantages of both algorithms by exploiting some special structure of the Jaco-
bian to obtain a good approximation to the Jacobian by using as little effort as possible.
Kantorovich-type analysis and a locally g¢-superlinear convergence result for this algorithm are
given.

Key words: finite difference, Jacobian, g-superlinear convergence, Kantorovich type analysis,
sparsity, nonlinear system of equations.

1. Introduction.

Consider the nonlinear system of equations
F(x)=0, (1.1)
where F:R" —>R" is continuously differentiable on an open convex set D CR", and
the Jacobian matrix F’(x) is sparse. To solve the system, we use the iteration
X =x—B F), (1.2)
where x is the current iterate, x is the new iterate, and B is an approximation to

F"(x), which has the same sparsity as the Jacobian.

Suppose we have finished the current iteration. Then the information we have
is x, x, F(x), F(x), B. The purpose of this paper is to find a matrix B which is a
good approximation to F’(X) but to economize on the number of function evalua-

tions required for this approximation.

In 1970 Schubert [11] gave a sparse modification of Broyden’s [1] update.
Broyden [2] also gave this algorithm independently. In order to present Schubert’s

algorithm, we introduce the following notation concerning the sparsity pattern of

the Jacobian:

Definition 1.1. For j=1,2,..,n define the subspace Z,CR" determined by the spar-

sity pattern of the jth row of the Jacobian:

Z;={v€R": e[v=0 for all i such that [F’(x)];;=0 for all x€R"},

where e; is the ith column of the nXn identity matrix. Define the set of matrices Z

that preserve the sparsity pattern of the Jacobian:

Z = {ACLR™): ATe€Z; for j=1.2,.,n /.

Definition 1.2. For j=12,...,n, define the projection operator, DJ-EL(R"), that maps
R"™ onto Z;:

Dj = dlag (djl’deJ R ’djn)’
where

1’ ifel‘ E Zj’
dj; = 0, otherwise.

For a scalar a€R, define the pseudo-inverse:

a l ifa =0,
at = .
0, ifa = 0.

Now Schubert’s update is formulated as follows:

B=B+ i([s]f[s]j)+ejef(y — Bs)(s1], (1.3)
Jj=1

where [s], = D;s,s =x —xandy = F(x) — F(x).
The advantage of Schubert’s algorithm is that at each iteration only one func-
tion value is required, and it is g-superlinearly convergent (see Marwil [8]). How-

ever it usually requires more iterations than finite difference algorithms (see Li

[7D.

Curtis, Powell, and Reid [4] proposed a finite difference algorithm, called the
CPR algorithm, which is based on a partition of the columns of the Jacobian. Cole-
man and Moré [3] associate the partition problem with a graph coloring problem
and gave some partitioning algorithms which can make the number of function

evaluations needed to approximate the Jacobian by CPR algorithm optimal or

nearly optimal.

Following Coleman and Moré, we give some definitions concerning a partition

of the columns of the Jacobian.

Definition 1.3. A partition of the columns of a matrix B is a division of the columns

into groups ¢y,c2,...,c, such that each column belongs to one and only one group.

Definition 1.4. A partition of the columns of a matrix B is consistent with the direct
determination of B if whenever b;; is a nonzero element of B, then the group con-

taining column ;j has no other column with a nonzero element in row i.

The CPR algorithm can be formulated as follows: for a given consistent parti-
tion of the columns of the Jacobian, which divides the set {1,..,n} into p subsets
€1,.., ¢p (for convenience, c;, i=1,2,..,p, indicates both the sets of the columns and
the sets of the indices of these columns), obtain vectors d;,ds,..,d, such that B is
determined uniquely by the equations

Bd, = F(x+d;,) — Flx) = y, 1=12,..p . (1.4)
Notice that for the CPR algorithm, the number of function evaluations at each
iteration is p +1. Since the partition of the columns of the Jacobian plays an impor-
tant role in the CPR algorithm, we call the CPR algorithm based on Coleman and

Mor€’s algorithms the CPR-CM algorithm.

The advantage of the CPR algorithm is that it usually requires fewer itera-
tions than Schubert’s algorithm. However, it requires more function values at each

iteration than Schubert’s algorithm (see Li [7]).

In an early paper [7], we proposed an algorithm called the secant/finite
difference (SFD) algorithm, which is also based on a consistent partition of the
columns of the Jacobian. However, it uses the information we already have at

every iterative step more efficiently than the CPR algorithm. Let

d[- = Zsjej , L= 112:-'-:1) s (1.5)

J€c,
g = Xxd;, g§=0, (1.6)
Jj=1
and
Y -_-'F(f—‘gL_l)—F(f—gl), I:=1,2,...,p, (17)

where s, = X, — x; indicate the ith component of s. The SFD algorithm can be for-

mulated as follows: If s; = 0, for some j € c;, then the jth column of B is determined

uniquely by equations
é_di =Ji-
If s; = 0, then the jth column of B is equal to the j th column of B.

Since

y1 = F@& —go)—Flx —g) = Fx) - F(x — g1),

i B _ (18)
Vo = FE—g,.1) —F& —g,) = F& —g,_1) - F0),

the number of function evaluations required by the SFD algorithm at each itera-

tion is one less than that required by CPR-CM algorithm.

Now consider the example

X 0 0 0 0 0 0 O
0 X 0 0 0 0 0O
0 0 X0 0 0 0 O
0 0 0 X0 0 0 O (1.9)
0 0 00 X0 0O
X X X 0 0 x 0 0
X X X 0 0 0 X 0
P(X X 0 0 0 0 X

The partition ¢, = {1}, ¢y ={2},c3={3},¢c,={4,5,6,7} is an optimal consistent
partition of the columns of the Jacobian. For this problem, the CPR-CM algorithm

and the SFD algorithm require 5 and 4 function values at each iteration

respectively.

In this paper, we propose an algorithm called the combined
Schubert/secant/finite difference (CSSFD) algorithm, which is a combination of the
SFD algorithm and Schubert’s algorithm (including Broyden’s algorithm). For some
problems, this algorithm can reduce the number of function values required at each
iteration to fewer than the SFD algorithm by considering special structure of the

Jacobian. For example (1.9), the number of function evaluations is 2.

The CSSFD algorithm and its properties are given in Section 2. A

Kantorovich-type analysis for this algorithm is given in Section 3. A g-superlinear

convergence result is given in Section 4.

In this paper, L(R") denotes the linear space of all real nXn matrices, (Bl

indicates the Frobenius norm of a matrix, and || indicates the [9-vector norm.

2. The CSSFD Algorithm and its Properties.

Consider example (1.9). The first 3 columns of the matrix are denser than the
other columns, and this makes p, the number of the groups in the partition, at
least 4. The CSSFD algorithm divides the columns of the Jacobian into two parts,

and uses different algorithms on each part.

We say a group of the columns of a matrix has ‘good sparsity’ if the columns
in this group have few nonzeros in the same row position. Otherwise, we say the
group of the columns has ‘bad sparsity’.

Suppose the columns of the Jacobian can be divided into two groups -- the
good sparsity group ¢ and the bad sparsity group c,. For convenience, we use ¢ and

¢, to indicate both the groups of the columns of a matrix and the sets of the indices

of these columns. Then,

cUcy = {1,..,n}
For any matrix A € L(R"), let

A]_:A EejejT, A2=A2£’jef

Jj€ey j€e
Then A = A; + A,. The main idea of the CSSFD algorithm is to use Schubert’s
update (including Broyden’s update) on B, and to use the SFD algorithm on By,

where B =Bl +32

In practice, there are many ways to choose ¢ and c;. For example, we can first
partition the columns by using a CPR-CM procedure. Then, if we can afford m F-
values at each iteration, we can keep the columns of the m —1 largest groups of the

partition for ¢ and put all the remaining columns into c;.

Algorithm 2.1. Given a consistent partition of By, which divides ¢ into p —1 subsets
€2,C3,..., Cp, and given an x%€R"™ and a nonsingular matrix B, with the same spar-

sity as the Jacobian, at each step £=0:
(1). Solve B,sf = —F(x").

(2). Choose x**! by x**1 = x* + s¥ or by a global strategy such as a trust-

region method. Let s* = x#*1 — %,
(3). Check for convergence.

(4). Update Bj; by Schubert’s update to get Bj.11, and update B,y by the

SFD algorithm to get B, 19 -

(5). Set

B,+1 = Brs1n + Brvro -

J€e, |
g =>xd, i=1.,p, g =0, (2.2)
J=1
yy=F&x—-g_y)—-Fx-g), i=1,2, - p,
and
1
J; = fF’(x’—gi +t(g, —gi-Ndt, 1=1,2,..,p. (2.3)
0
Then,

Jidi = Yi, 1= 112' o P, (24)
and the update of Algorithm 2.1 can be formulated as

B, =By + 3 (dy)ld11)* eiel(yy — Brdpldy)T,
=1

B—2 = By + i 2 Sj+3j(Ji "B2)ejejT ’ (2:5)
i=2 j€c,

B_=§1+Bz.

{

Now we give some of the properties of B obtained from (2.5).

Lemma 2.1. B satisfies the secant equations

Bdi =Y, 1 = 1,...,p 5 (26)
and (2.6) implies that

Bs = Fx)—Fx) = y. (2.7)

Lemma 2.2. B is the unique solution to

min{|B — Bjp: Bd, =y;, i=1,.,p, and B € Z }. (2.8)

The proof of this lemma is similar to that for Schubert’s algorithm given by Reid

{10] and Marwil (8].

Theorem 2.3. If A € L(R") has the same sparsity as the Jacobian, then

— 1
1By — Ayl = IB1—A4lf - W"(Bl — Aps|?
. ; (2.9)
+ > ([d1]iT[d1],-)+[eiT(y1 —Adl)]2 .
=1
Proof. Let E; = B,—-A,;,and E; = B, — A;. From (2.5), we have
eTB, = e[By + ([d,1F1d,]) el (y, — Bydld,)] . (2.10)

Subtracting el A; from both sides of (2.10), and noticing that efB,d, = elB,ld,);

and that el A d, = eTA,[d,];, we obtain

eTE, = ¢TE, + ([d171d;}) T el (y; — B1dld,]F
= eTE U — (1d,17[d 1) d):[d,1D) (2.11)
+ ([d)T1d 1) el (y, — A1dldy)T

Since ([d171d;))Yel(y;, — A,d,) is a scalar, the first and second terms on the right

of (2.11) are perpendicular to each other, and we have

leTE L2 = eTE(— ([dy)71d 1) [d11ldDI? + (1) Td 1) el (1 - Aqdy)f?

= |eTEI? — ([d1)1d 1) * [T Eld,) |2 + (1) Td1)) el vy — Ardp)l?
1
lls|i?

=< |lefE | - leTE dy|? + (d)Ttd 1) el vy = Ady)?.

Therefore,

— n —
1By — Al = 3 le/EP
i=1
1

"—8"3"(31 —Apdy)?

= |By — Al -

+ 3 (dy)7Id1) el vy — AydpP?
=1
1

“THZ'"(B L — Apsi?

= By — Aulf -

+ 3 ()7 el — ArdyP

i=1

Theorem 2.4. If A € L(R™) has the same sparsity as the Jacobian, then
1
IIs/?

+ $ 3 stsilW — Ael?

i=2 j€c,

1By — Aol = By — Agl} — —5 Bz — A)sl?

(2.12)

Proof. Let E, = By— Ay, and Ey; = By— A, It follows from (2.5) that if
j€ec,i=2,..,p, then

Bae, = Bye, + s;'sj(J; — Bole; . (2.13)
Subtracting Ase; from both sides of (2.13), we obtain

E—zej = (1 - Sj+8j)E29j + sj+sj(°]i - Az)ej .
Since (1 —s;7s;)s/"s; = 0, we have
||E_2€j||2 = (1 —5;"s))|Eq¢;l? + 5,7 s,l(J; — Aje)l?
= ||E2€’j"2 - 3j+3j“E2ej"2 + s sl — A2)€j"2 :

Therefore,

IESlF = 3 IE sl (2.14)
j€c

= EolE — st s Bl + S 3 st sl — Al

J€c =2 je€c,

In addition,

3 stsilEqel® = |Es X st sjeefIE

J J
j€e j€c !
IEy S s,7s eels|?
Je DT Egs)?

s} T IsI?
Thus, (2.12) follows from (2.14).

3. A Kantorovich-type Analysis.

To study the convergence properties of Algorithm 2.1, we assume that F~

satisfies the following Lipschitz condition: For every i € ¢, there exists vy, > 0, such

that

IF x) = F (el = yillx —yi 7/x,y €D, (3.1)

and there exists ©;, >0, i =1,2,.., n, such that

lel(F (x)y = F* 0l < OJx —y|, Tx,y€D . (3.2)
1

1 1 1
Let y=(Xv??2, 6 =(i 022 a=(y*+©0%2%. If F’ satisfys this Lipschitz con-
i€c i=1

dition, then the following are true:

IW’(x)l _F’(y)luF = e"x _y“ ’ “/xuy €D ’ (33)

IF (x)g = F oy = vlx —yl, 7x,y€D, (3.4)
and

WF) = F lr = alx =yl Vx,y€D . (3.5)

Lemma 3.1. Let F~ satisfy (3.1) and (3.2), and let B be generated by Algorithm

21.Ifx€D and x — d; CD, then for any z € D,

10

LBy - Fr@)sl?
<1 (3.6)
+ 0T — 2l + S lil?

1By — F @)} < IBy = F)lif -

Proof. Substituting F(z) for A in (2.9), we obtain

1By — F' @l = 1By — F @l — 5By — F(2) sl
. sl 3.7)
+ 3 (d)Id 1) el (v, — F ()d)P .

i=1

By (2.3), (2.4), (3.3), and Cauchy-Schwarz inequality we have

n

2 ([d1]lT[d1],‘)+[€¢T(y1 - F'(Z)dl)]2 = i ([dl]g‘[dlli)-’-(é’?‘(e}l ‘—F’(Z))l[dl]i)2

(=1 i=1
= 3 Wdld,) el Ty — F @) lld 2 = 3 1ef ey — F @)yl?
i=1 i=1
1
=y = F @)l = If F & -1~ 0dy) — F @) del} (3.8)
0

- 1
< O%(Ix — 2l + S ldu* .

Then (3.6) follows from (3.7) and (3.8).

Lemma 3.2. Let F’ satisfy (3.1) and (3.2), and let B be generated by Algorithm
21 Ifx€éDand{x—g;, i =2,..,p }CD, then for any z € D,
1 . 2
I(By — F(2)9)s]

lst? @9)
+ YA — 2| + Ish? .

1By — F(2)3ff = 1By — (F(2)4lF —

Proof. Substituting F°(z) for A in (2.12), we obtain

11

1

1By — F (2)g% =< |By — F @)} — —5(By — F (@) sl

“3“2 3.10)
+ i 2 SJ'+ SJ"(JI - F'(z))ej||2 .
i=2 jec,
It follows from (2.3) and (3.1) that
$ S sl —Fenelf s $ T~ Fr@e,f
i=2 jecr i=2 jEc,
1
= f‘. SIfE G —g + tlg — g.-1)) — F (2))dt ¢
i=2 j€c, 0
j (3.11)

1
= $ Sv2fUF - 21 + (1 = Ol + el _ohde)?

i=2 jée, 0

= § S — 2 + Is? = v2IF — 2+ IsD? .

i=2 j€e,

Thus, (3.9) follows from (3.10) and (3.11).

Let

de = 2 Ské’j
J€c,

and

i
gtfe = 2 dj‘, i=12,..,p, g§=0.
j=1

We have the following estimate for B ;.

Theorem 3.3. Let F~ satisfy (3.1) and (3.2), and let {x*} and {B,} be generated

by Algorithm 2.1. If &/ }fXd CD and (¥ *' ~ g/, i = 1,2,..,p/tyCD, then

f2 . .
1Brsy — F ¥ Hlr = By — F (xp)lr + 2a D ERRE I (3.12)
(=0

Proof. Substituting z for X in (3.6) and (3.9), we have

12

1B, - F /@1l < 1B, ~ (Ol + ()

and

1By = F ()l = By — F (D)ol + (vls)? .

Therefore

B = F' (@2 = |By — F @} + 1By — F (Dal
< |B — F' @I} + (© + yD)|s|?

=B —F @I + o?s)®.
Then

IB—F @l = IB—F @l + alx — I (3.13)
< B = F (0| + 2alx — x| .
Thus, (3.12) follows (3.13).

From (3.12), we have the following Kantorovich-type theorem for Algorithm

2.1.

Theorem 3.4. Assume that F~ satisfies (3.1) and (3.2). Also assume that xo € D and

By € L(R") satisfy

1By —F O = &, 1Bg!lr = B, IBg'F&OI =7
and
(1-388€2 10 3
If S(x°,2t%) = {x: Jx —x% = 2t"} C D, where

1
= —(1—10h)?
t 5af 1-0@1)%,

13

then fx*}, generated by Algorithm 2.1 without any global strategy, converges to x,

which is the unique root of F(x) in S(x°,¢) N D, where

0o | =

ap T (1- B’

1 2a8n]

Proof. Consider the scalar iteration

= 2B i), =0, k=12

t -t = = - 3.14
kR+1 k 9 — Bs ()
where
5 1-386 n
fit) = ~ at? - t+ - . (3.15)
2 B B
It is easy to show that {t,} satisfies the difference equation
tk+1 - tk - T_%[a(tk - tk'—l) + 2atk_]_ + 6](tk - tk_l) 9 (3.16)
_ 3+ B6 2 : . ccally i
where ¢ = 5 < 3 From (3.16), we see that {¢,} is a monotonically increas-
ing sequence and that
lim¢, = ¢,
where ¢ is the smallest root of (3.15).
Now, by induction, we will prove that
"xk+1 —xk" = thtr — ks k=12, -, (3.17)
fxt} C S ¢", (3.18)
fktl gk =12, ., p}C S(x%2t"), (3.19)
and
By s —L— <38, k=12 - (3.20)

1-9¢

14

For £ = 0, we have

et —x% = =

Thus,

bt — g0 — 2 = et — <O+ hgl) = 2t - 20 = 267

Suppose (3.17) holds for k =0,1,..,m — 1. Then,

m
e — 20 =

2 G =)=ty St
(=0

Therefore, x™ € S—(xo,t*), and

fxm —gm=1l i =1,.,p}CSx%2t").
By Theorem 3.3,

B¢ (B —Bol
= IB5 HIFUIB — F x™lp + IF (™) = F Ol + IF (%) — Bollr)

m=—1 . .
= BBa i+t — x|+ 28) < BBat’ +28) < ﬁgﬂ =¢q.
i=0

Thus, by Theorem 3.1.4 of Dennis and Schnabel (6, p.45],

B = —B— <38,
-9
Therefore,

et = x| B RF ™) = P = By = 2D

< B [&pem _xmY 4 20
1-¢ 2

m—2) .
e+t = x| + 8™ — x|
i=0

T‘iLq’ lalt, — tm-1) + 20t T 6](’tm ~tm—1) = tn1 — tm -

IA

This completes the induction step. By (3.17), it is easy to show that there is an

x" € D such that

15

limx? = x" .

k-

" The uniqueness of x* in S(x°,¢) N D can be obtained from Theorem 12.6.4 of [9] by

setting A(x) = B,.

4. Local Convergence properties.

To study the local convergence of our algorithm, we assume that

F:D CR™ —>R" has the following property:

There is an x* € D, such that F(x") = 0 and F*(x") is nonsingular. (4.1)

Theorem 4.1. Let F satisfy (4.1), and let F~ satisfy (3.1) and (3.2). Also, let {x*} be
generated by Algorithm 2.1 without any global strategy. Then, there exist ¢, >0,
such that if xo € D and By, a nonsingular nXn matrix, satisfy

-zl <€, IBe—F (s =3,

then {x*} is well defined and converges g-superlinearly to x.

1

Proof. Notice that when ¢ and & are small enough, we have that h = —1%, B < 3

and that §(x0,2t*)CD, where h, B and ¢t are defined in theorem 3.4. Therefore,

by Theorem 34,

fhtl+ gk i=1,2,.,p}CD.

Thus, substituting x" for z in (3.6) and (3.9), we have

1
s

+ O%(lx — x| + Ish? , 14.2)

By —F (x")3 < By — F &Nl - 1By — F (x")ps|?

16

and

1By — F'(x")gl2 < |By — F (x")gl — “S#wz —F ()l
+ Y(F = < + 2 - 4.3)

Then,

1B —F ()= By — F (x4} + 1By — F (x")all?
< |B — F (x)I} + a®(jx — "] + Is])?

< |B — F (x| + (Baa(x 1))

where o(x,x) = max{ x — x"],|lx — x" ||. Therefore,

IB—F &)F <|IB—-F &)+ 3ac(x,X) .
Thus, by Theorem 5.1 of Dennis and Mor€ [5], {x"} converges at least g-linearly to

*

X .

By Theorem 3.1 of Dennis and Moré [5], to prove g-superlinear convergence,
we need only to prove that
1B, — F " Ns*| _

ke sl

Let E =B —F’(x")and E =B — F"(x"). Then, it follows from (4.2) and (4.3) that

(4.4)

= , IEsP 5 45
lElF = QE.lF — s)2 + 3600(x, X), .
and that
= IEsI? &
IEolr = (IElF - WE)2 + 3yolx, X) . (4.6)

From (4.5) and (4.6), using the same argument for proving the g-superlinear con-

vergence property of Broyden’s algorithm (see Dennis and Moré (5]), we obtain

17

By = F(x))is”|
lim ;
ke lIs“1

-0, 4.7)

and

I(Be = F(x)gs”|

- =0. (4.8)
ko s ™1

Notice that

By = F (x"Ns®| = By — F " (x Nys*| + By — F"(x Nas"|l .
Thus, (4.4) follows from (4.7) and (4.8).

Acknowledgement. We would like to thank Professor Richard Tapia and the

referees for helpful suggestions and corrections.

18

[11.

[2].

[3].

[4].

[5].

[61.

[71.

[81.

[9].

References

Broyden, C.G., A class of methods for solving nonlinear simultaneous equa-
tions, Math. Comp., 19 (1965), pp. 577-593.

Broyden, C.G., The convergence of an algorithm for solving sparse nonlinear
systems, Math. Comp., 25 (1971), pp. 285-294.

Coleman, T.F., and J.J. Moré, Estimation of sparse Jacobians and graph color-
ing problems, SIAM J. Numer. Anal., 20 (1983), pp. 187-209.

Curtis, A.R., M.J.D. Powell and J K. Reid, On the estimation of sparse Jacobian
matrices, J ILM.A., 13 (1974), pp. 117-119.

Dennis, J.E, Jr., and J.J. Moré, Quasi-Newton Methods, Motivation and
Theory, SIAM Review, Vol. 19, No. 1 (1977).

Dennis, J.E,, Jr., and R.B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New
Jersey (1983).

Li, Guangye, The secant/finite difference algorithm for solving sparge nonlinear
systems of equations, Technical Report 86-1, Math Sciences Dept., Rice Univ.
(1986).

Marwil, E., Convergence results for Schubert’s method for solving sparse non-
linear equations, SIAM J. Numer. Anal., 16 (1979), pp. 588-604.

Ortega, J.M., and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations

in Several Variables, Academic Press, New York (1970).

[10]. Reid, J.K., Least squares solution of sparse systems of non-linear equations

19

by a modified Marquardt algorithm, Proceedings of the NATO Conf. at Cam-
bridge, July 1972, North Holland, Amsterdam, pp. 437-445.
[11]. Schubert, L.K., Modification of a quasi-Newton method for nonlinear equa-

tions with a sparse Jacobian, Math. Comp., 24 (1970), pp. 27-30.

20

